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Abstract—Motorcycle accidents pose significant risks, partic-
ularly when riders and passengers do not wear helmets. This
study evaluates the efficacy of an advanced vision-language
foundation model, OWLv2, in detecting and classifying various
helmet-wearing statuses of motorcycle occupants using video
data. We extend the dataset provided by the CVPR AI City
Challenge and employ a cascaded model approach for detection
and classification tasks, integrating OWLv2 and CNN models.
The results highlight the potential of zero-shot learning to
address challenges arising from incomplete and biased training
datasets, demonstrating the usage of such models in detecting
motorcycles, helmet usage, and occupant positions under varied
conditions. We have achieved an average precision of 0.5324 for
helmet detection and provided precision-recall curves detailing
the detection and classification performance. Despite limitations
such as low-resolution data and poor visibility, our research
shows promising advancements in automated vehicle safety and
traffic safety enforcement systems.

Index Terms—Vehicle safety, Zero-shot learning, Vision-
language models, Helmet detection, Traffic enforcement systems

I. INTRODUCTION

Motorcycle accidents are frequent causes of injury and
death worldwide, especially for occupants not wearing helmets
[1]-[4]. Specifically, in India, in 2022, two-wheeler deaths
accounted for 44% of total road fatalities with 74,897 deaths,
the highest out of all modes of transport!. Helmets are 35%
effective in reducing the risk of Abbreviated Injury Scale 3+
head injuries [5]. Additionally, 4 people die every hour in India
because they do not wear a helmet?, causing 44,666 deaths in
2019 [6].

Section 129 of the Motor Vehicles Act in India states that
“Every person ... on a motorcycle of any class or description
shall, while in a public place, wear protective headgear con-
forming to such standards as may be prescribed by the Central
Government.” [7] Despite regulations mandating helmet use,
compliance is inconsistent, leading to preventable injuries.

Iterations of the CVPR Al City Challenge [8] have prompted
researchers to address this challenge, stating “Motorcycles are
one of the most popular modes of transportation, particularly
in developing countries such as India. Due to lesser protection
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compared to cars and other standard vehicles, motorcycle rid-
ers are exposed to a greater risk of crashes. Therefore, wearing
helmets for motorcycle riders is mandatory as per traffic rules,
and automatic detection of motorcyclists without helmets is
one of the critical tasks in enforcing strict regulatory traffic
safety measures.” We suggest that, besides the enforcement of
traffic safety measures, there is also an even greater benefit in
the ability of IoT-style communication between infrastructure
or egocentric perception devices. Such systems could detect
the presence of motorcyclists and passengers (with or without
helmets) and alert the surrounding vehicles whose drivers
(autonomous or human) may be otherwise unaware of the
vulnerable road users in their proximity [9].

Accordingly, to perceive holistic information about motor-
cycles and their occupants in a scene, the goal task we evaluate
in this paper is the detection and classification of the following
objects in every frame of a large video dataset:

1) Motorcycle,

2) Drivers wearing helmets,

3) Drivers not wearing helmets,

4) Passengers wearing helmets,

5) Passengers not wearing helmets,

6) 2nd Passengers wearing helmets,

7) 2nd Passengers not wearing helmets,

8) Children sitting in front of the driver wearing helmets,

9) Children sitting in front of the driver not wearing hel-
mets.

In this research dataset, these scenes are captured by
infrastructure-mounted cameras, though the same models can
also be applied to egocentric views. This is especially the case
given the zero-shot learning approaches we take, which do
not require specific-view training data to be applied. We show
sample data of these classes in Figure 1.

With many data-driven applications, a common challenge is
the ability of a training set to adequately represent the diversity
of instances that appear in the real world [10], [11]. For this
reason, data-driven methods excel when given the most data
possible, as this increases the likelihood of learning similar
patterns to a real-world instance. To this end, we create a
method that extends beyond the dataset presented by Shuo et
al. [8] by employing a pre-trained vision-language foundation
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Fig. 1: Example instances of classes to detect, cropped from the AI City Challenge dataset. From left to right: Motorcycle,
Driver with Helmet, Driver with No Helmet, Child Passenger with No Helmet, Passenger 1 with Helmet, Passenger 1 with No

Helmet, Passenger 2 with No Helmet.

model for this detection task, specifically, the OWLv2 [12].
Further, in our research, we present a strategy for cascading
models to modularly isolate and improve task performance for
these important safety systems.

This foundation model strategy is important especially in
consideration of challenges presented by dataset shortcomings.
The given dataset has no instances of a child passenger with
a helmet or a second passenger with a helmet. This is a huge
hindrance in accurately detecting the seat position and helmet
status in these specific classes using traditional machine-
learning approaches due to the lack of data for training.
Therefore, the use of zero-shot learning may provide a means
to identify these instances in ‘real world’ test data even without
specific training.

The question we explore in this research is to what de-
gree such foundation model approaches, namely OWLv2, are
ready for use with real-world data in this motorcycle safety
road scene perception domain and where their strengths and
weaknesses may lie.

II. RELATED RESEARCH

Conventional machine learning object detection algorithms
rely on manual annotations and specialized algorithms, which
can be time-consuming and resource-intensive to label, espe-
cially as the models are limited to learning from provided
datasets. Moreover, these methods often lack the flexibility
to adapt to new environments or variations in helmet designs
[13].

Foundation models, with billions of parameters trained on
enormous collections of information, have recently led to
effective zero-shot techniques for a variety of tasks [14], where
a learned model can provide strong performance on datasets
unseen during training [15]. One such foundation model is
OWL-VIT [16]; OWL stands for “open-world localization”,
referring to this model’s ability to function in an “open”
world (i.e., non-rigidly specified set of expected classes). The
ViT portion of OWL-VIT refers to the Vision Transformer,
an architecture that applies the attention mechanism to im-
ages instead of the prior standard of convolution. The OWL
family of models uses contrastive learning between batches
of image patch encodings and text embeddings, with image
patch encodings producing proposed classes and proposed

bounding boxes, and treating detection as a bipartite matching
problem between these decoded image classes and bounding
boxes, as introduced in the Detection Transformer (DETR)
technique [17]-[19]. Together, these methods were shown
to be effective in zero-shot object detection (identifying a
bounding box around desired classes of interest within an
image). This method was refined and scaled up using self-
training as OWLv2 [12], whereby pseudo-box annotations are
provided from an existing detector, and it is this further-trained
model that we use in the method shared in this research.

For the same application of detecting and classifying the
given objects detailed in Section I, many different approaches
have been tried in the previous AI City Challenges; in the
2023 AI City Challenge [20], Tran et al. [21] used YOLOv8
for a score of 0.7754 for the mean average precision (mAP).
Cui et al. [22] used DETA [23] ensemble and Detectron2 for
a mAP of 0.8340. In the 2024 AI City Challenge [8], mainly
transformer models combined with ensemble techniques were
used. Vo et al. [24] used Co-DETR [25] with a Minority
Optimizer for class imbalance and a Virtual Expander for a
mAP of 0.4860. Chen et al. [26] used a DETA and DETR
fusion model for a score of 0.4824 mAP.

III. ALGORITHMS FOR IMAGE PROCESSING WITH
VISION-LANGUAGE DETECTION

To address the challenges of accurately detecting and
classifying motorcycles, their passengers, and helmet usage,
we developed a cascading detection algorithm for OWLv2.
Furthermore, due to OWLV2’s shortcomings, we employed an
AlexNet for the seat classification task. This section outlines
our cascading detection algorithm using OWLv2 and discusses
our approach for the seat classification task.

We first note that there are abstract classes that relate
the target classes to one another; for example, “motorcycle”
and “person” are the abstract classes represented in the data
scheme, where “person” can be further classified based on the
attributes of helmet-wearing and seating position. Due to this,
our first goal is to detect these high-level classes. Further, we
know that there is no driver or passenger without a motorcycle,
so we only detect “person” in association with a particular
motorcycle instance.

Our detection algorithm, illustrated in Figure 2, begins with
a detection stage. We provide a scene image (resized to 960 by
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Fig. 2: Our algorithm for detecting the relevant objects for helmet safety, as well as the appropriate attributes, acts in a
cascaded style. First, from the original image, we detect all motorcycles. Then, within each motorcycle, we detect all human
occupants (drivers and passengers). Then, for each detected human, we perform helmet detection and seat position classification.
All detections, including helmet detection for the purpose of classification, are done using OWLViT2, while seat position

classification is done using AlexNet.

960 pixels and values normalized in [0, 1], relative to the size
of each individual image in the batch) as input to OWLv2
along with the text “motorcycle”. The CLIPTokenizer, from
[15], encodes the text to be wrapped by the processor with
the normalized image.

To detect the person instances on the motorcycles, we ex-
pand the re-scaled bounding box by 50 pixels on the left, right,
and top sides to encapsulate any person instances surrounding
the motorcycle. Using the expanded box, we crop the original
image and run the OWLV2 model over this cropped image
with the prompt “person” to detect person instances.

The algorithm’s subsequent step is to perform the next level
of detection, focusing on helmets, by cropping each person
instance and running the OWLv2 over the cropped image with
a text input of “helmet”. Because our task is to classify each
person based on whether they are wearing a helmet and not
necessarily to detect the helmet itself, we store the boolean
result of this detection as an attribute of the person (rather
than noting the bounding box).

We note that there is a general difficulty of OWLv2 in
differentiating a person’s semantic position on the motorcycle
(such as driver, passenger, second passenger, etc.), as noted
in Section IV. For this particular portion of the task, we
take a supervised learning approach. We seek to provide each
person detected on the motorcycle with an attribute of location

between the positions enumerated in the introduction.

Therefore, we use a neural network (a variant of AlexNet
[27], with a final layer output of four) to classify the seating
position on a motorcycle of the person instances detected with
OWLv2.

Due to the use of the AlexNet in the seat position clas-
sification task, we recognize that the whole process is not
completely zero-shot. It is rather a hybrid of zero-shot learning
and supervised learning, with zero-shot for the association and
detection of motorcycles, their passengers, and their helmet
status, and supervised learning for the seat classification of
the passengers. In this way, the methods in this paper actually
address four tasks (motorcycle detection, person detection,
helmet detection, and seat classification); three of these are
solved in a zero-shot manner, and we include a learned
approach to seat classification as this is a relevant safety task
that should also be considered in conjunction.

In total, this algorithmic sequence of tasks can provide
detections of motorcycles, associated people, their positions,
and their helmet status for each image in a video.

IV. EXPERIMENTAL METHOD AND EVALUATION

Using the cascaded object and attribution detection algo-
rithm detailed in the previous section, we performed detection
on the dataset of 100 videos provided by [8], with further
implementation details described in this section.



We first conducted the motorcycle and person detection of
our cascaded detection process as described in Section III.

The threshold for OWLV2 is a confidence threshold, mean-
ing it is the minimum confidence score that a predicted
bounding box must have to be considered a valid detection.
The OWLV2 will discard any detection with a confidence score
below the given threshold. The confidence score is calculated
as logits on a per-detection basis.

We performed the cascaded detection process with thresh-
olds of 0.1 to 0.7 on the OWLv2 to examine the sensitivity
of precision and recall to thresholds. 0.7 was chosen as
the last threshold, as OWLv2 made no detections with a
threshold higher than 0.7. Using the output of our detections,
we calculated the precision and recall at each confidence
threshold.

To evaluate the ability of OWLv2 to classify a passenger’s
helmet status, regardless of error in upstream person detection,
we detected helmets within the ground truth bounding boxes
of passengers to classify the passenger’s helmet status. As in
the previous detections, we experimented with a threshold of
0.05 to 0.7.

When performing the seat classification based on the person
detection, we attempted to determine a passenger’s seat with
OWLV2, first using the text prompts provided by the labels
in the dataset, such as “passenger 1” and “child passenger.”
However, with these prompts, OWLv2 tended to miss some
passengers and mislabel the people. Assuming this was due to
the inputs, we attempted more specific prompts such as “child
in front of driver” or “passenger behind driver”. Nevertheless,
this also yielded similar results. We hypothesize that the
prompt inputs were not the determining factor of OWLv2’s
failure to detect and differentiate the different people on a
motorcycle, showing possible shortcomings of model training
for this particular type of task. Furthermore, the task of
classifying people based on their relative location to other
people and the motorcycle may be too specific for the model.

After observing OWLv2’s shortcomings with our intersec-
tion data, we used a modified AlexNet for the seat classifica-
tion subtask [27]. We modified the last layer of the AlexNet
from 10 outputs to 4 to suit our task.

We used an approximate inverse class frequency to over-
come the severe class imbalance in the dataset as shown in
Table I. At first, we tested the weighting of 1.147, 7.908,
785.229, and 2093.944, calculated by inverse class weighting.
However, this was insufficient, as the model did not appear to
learn the child class and appeared to over-favor the driver class.
Therefore, we incrementally increased the weighting of the
classes of passengerl, passenger2, and child passenger relative
to the driver, updating the previously mentioned weights to 1,
10, 800, and 3000, respectively.

We split the data 70/15/15 for the training, testing, and
validation. We used a cross-entropy loss. Finally, we trained
the model using a learning rate of 0.0001 for 100 epochs.
Then, we used the model with the lowest loss on the validation
set to make inferences on the test set.

TABLE I: Ground Truth Data

Class | Frequency
Driver 32,889
Passenger 1 4,796
Passenger 2 78
Child Passenger 48
Total | 37811

Fig. 3: Sample images of the dataset of different angles with
different environments. From top to bottom: night, foggy,
crowded

A. Data

The dataset provided by [8] contains 100 videos taken by
infrastructure-mounted cameras in India. They are annotated
with bounding boxes of motorcycles and up to four passengers
who may or may not be wearing helmets. Each video is
20 seconds long, sampled at 10 Hz, and has a resolution
of 1920x1080. Example images from the dataset are shown
in Figure 3. The ground truth data is comprised of class
frequencies, as shown in Table I, and has 26349 helmet-
wearers and 11462 unhelmeted people, meaning 69.7% are
helmeted.



TABLE II: Precision and Recall scores of OWLv2 Motorcycle
detections. No detections were made above the threshold of
0.7.

Threshold | Precision (ToU 0.5) | Recall (IoU 0.5)
0.7 0.7124 0.002095
0.6 0.7357 0.1232
0.5 0.6249 0.3384
04 0.5548 0.4453
0.3 0.4849 0.5258
0.2 0.3951 0.6108
0.1 0.2460 0.7226
B. Results

Our OWLV2 detected motorcycles with accuracies shown
in Table II and detected persons with accuracies as shown in
Table III. For motorcycle detection, the average precision is
0.4122, calculated by the area under the curve of Figure 4, and
for person detection, the average precision is 0.3561, obtained
from Figure 5.

Our helmet-status classification was done through helmet
detection with OWLV2 on the provided ground truth bounding
boxes of passengers, with a representative classification based
on the helmet’s presence or absence. This resulted in the
precisions and recalls in Table IV, tested over multiple thresh-
olds, resulting in an average precision of 0.5324, as further
illustrated in Figure 6. A naive classifier, which always predicts
the rider to be wearing a helmet, would have a precision of
69.7% and a trivial recall of 100% based on the ground truth
data described in Section IV A; at all thresholds, our precision
is higher than the naive classifier, showing a reduction in false
positives and negatives.

The IoU in Tables II, III, and IV stands for intersection
over union, which is the metric for evaluating the accuracy of
a predicted bounding box. The IoU is calculated as follows:
IoU = ﬁ% or IoU = %, where A stands for
the predicted bounding box and B stands for the ground truth
bounding box. In our evaluation, for a given detected bounding
box, if the IoU with the ground truth is greater than or equal
to 0.5, then the detection is considered a “true positive”.

Finally, our neural network’s seat classification achieved
an accuracy of 95.17% on the validation set, with the clas-
sification results on the test set displayed in Figure 3. We
note that the severe class imbalance does leave the child
passenger class unsuccessfully classified, though this does
not have much impact on the accuracy metric. This reveals
an insufficiency in the model learning and cautions us of
evaluating performance for such an imbalanced dataset without
examining class performance in the confusion matrix.

C. Sensitivity of Helmet Detection to OWLVIT Detection
Threshold

Due to the nature of the dataset, it is important to find an
optimal threshold in our detections. As many videos within
the data are often unclear, too high of a threshold may omit
the detections within the unclear regions of the data. On the
contrary, too low of a threshold may yield unrelated detections,
such as detecting a bike as a motorcycle. Therefore, an optimal

TABLE III: Precision and Recall scores of OWLv2 Passenger
Detection. No detections were made above the threshold of
0.5.

Threshold | Precision (IoU 0.5) | Recall (IoU 0.5)

0.5 1.0 6.6136e-5
0.4 0.9437 0.02183
0.3 0.8861 0.1066
0.2 0.6992 0.2568
0.1 0.2672 0.5432

TABLE IV: Precision and Recall scores of OWLv2 Helmet
Classification. No detections were made above the threshold
of 0.7.

Threshold | Precision (IoU 0.5) | Recall (IoU 0.5)
0.7 0.9565 0.005845
0.6 0.9557 0.1046
0.5 0.9221 0.1980
04 0.8775 0.2698
0.3 0.8280 0.3370
0.2 0.7852 0.4143
0.1 0.7398 0.5298
0.05 0.7146 0.6370

threshold between these two extremes is necessary to achieve
the highest accuracy. We show the results of exploring multiple
thresholds in our research and note that continual tuning
will be important when applying these methods to additional
datasets or tasks.

V. CONCLUDING REMARKS AND FUTURE RESEARCH

Zero-shot learning demonstrates the potential of this appli-
cation as it can overcome some limitations of incomplete and
biased training datasets. As noted, the provided dataset lacks
instances of child passengers with helmets and second pas-
sengers with helmets, making training traditional supervised-
learning models difficult. Zero-shot learning leverages pre-
training on diverse data, classifying unseen instances more
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Fig. 4: Precision-Recall Curve of Motorcycle Detection. Ini-
tially, a slight increase in precision indicates improved confi-
dence in early predictions. However, precision declines steeply
as recall rises, highlighting the model’s challenge in maintain-
ing accuracy while capturing more true positives.
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Fig. 5: Precision-Recall Curve of Passenger Detection. The
curve demonstrates a high precision at low recall values.
Despite the trade-off of precision and recall, the shape suggests
a robust model performance in balancing the two.
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The curve has a high initial precision, progressively decreasing
as recall increases. Efforts to capture more true positives
resulted in a higher incidence of false positives.
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accurately. With further fine-tuning and training, zero-shot
learning has a strong potential for accurately handling real-
world data.

Several sources of error are demonstrated in the helmet
classification. The ground truth bounding boxes do not always
encompass the whole person. Many boxes were taken from the
lower half of their body as they entered the frame of the video.
Additionally, overlapping bounding boxes with passengers and
drivers, where drivers have helmets on, but the passengers do
not, often confuses the OWLV2, claiming that it had detected
the helmet in both cases. This also impacts person detection,
as the OWLv2 cannot detect the passenger due to the driver
obstructing most of the passenger’s body.

Furthermore, AlexNet and the OWLv2 foundation model
were challenged when faced with ‘real-world’ noise-filled
scenarios. Many of the videos provided in the dataset had
very low resolutions, with blurred-out time stamps at the top
left and bottom right obstructing the view of motorcycles.
Data collected during the night further reduced visibility, as
the headlights of motorcycles and cars create a blurry effect
throughout the video. The regular poor conditions of fog or
heavy air pollution compounded these factors, as shown in
Figure 3. All of these various aspects made image detection
and classification challenging and sometimes near impossible.

Future investigations are necessary to apply zero-shot learn-
ing in the real world. In this application, accurately detecting
helmets will help to raise awareness as the detections will
provide a more accurate measure of the frequency at which
people do not wear helmets, as well as assist in enforcing the
wearing of helmets. The ability to respond to unanticipated
data is crucial for safety systems, as real-world scenarios
often surpass the scope of any pre-existing dataset. Ongoing
development and refinement of the model will be imperative
to fully harness their potential in practical safety systems.
Our future research will focus on enhancing the accuracy,
robustness, and consistency of zero-shot learning models in
our detections.

To handle noisy data, pre-training the OWLv2 on further
diverse datasets will allow it to better handle uncertain de-
tections. Furthermore, preprocessing the data will mitigate
some of these issues. Moreover, a possible improvement
is the further integration of AlexNet and OWLv2 for seat
classification. A hybrid approach using these two models will
involve ensemble methods to balance their strengths for a more
accurate result [28].

Finally, we will address task-specific shortcomings. For
example, at times, the OWLv2 model fails to get the bounding
box over the whole person, specifically the head, which is
especially crucial for this task. A primary focus will be
improving the model’s ability to localize and classify these
critical areas accurately.

Despite current limitations and imbalances in data, this re-
search shows the potential of foundation models and language-
based prompting toward the zero-shot handling of important
safety challenges. We address all components of the Al City
Challenge Helmet Detection and Occupancy tasks, showing



possibilities for the OWL model to address the sub-tasks of
detection and association of vehicles, their occupants, and
safety state information. This application has the potential
to extend upon I2V communication. The detections from
the infrastructure point of view can be sent to the vehicle’s
egocentric perception in order to alert drivers of the presence
of motorcycles for safer intersection driving.
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